Thursday, 21 September 2017

Aktienoptionen Bewertung Black Scholes


Verwenden von Black-Scholes, um einen Wert auf Aktienoptionen (LifeWire) zu setzen - Jahrelang konnten Unternehmen, die Arbeiter mit Aktienoptionen bezahlten, vermeiden, die Kosten dieser Optionen als Aufwand abzuziehen. Die Regeln änderten sich im Jahr 2005, als die Buchhaltung ihre Richtlinien für aktienbasierte Zahlungen in einer Regel mit dem Namen FAS 123 (R) aktualisiert hat. Heute wählen Unternehmen in der Regel aus einer von zwei Methoden, um die Kosten für die Angabe eines Mitarbeiters eine Aktienoption zu bewerten: ein Black-Scholes-Modell oder ein Gittermodell. Unabhängig davon, welche sie wählen, müssen sie die Optionen auf ihre Gewinne abziehen und so die Gewinnanteile senken. Das Black-Scholes-Modell ist eine Nobelpreis-gewinnende Formel, die den theoretischen Wert einer Option auf der Basis einer Reihe von Variablen bestimmen kann. Da die Optionen den Mitarbeitern arent-Repliken von börsengehandelten Optionen gewähren, erfordern die Black-Scholes-Regeln eine Änderung der Mitarbeiteroptionen. Die Modellgleichung ist komplex, aber die Variablen sind einfach zu verstehen. Sie sind auch hilfreich bei der Bestimmung der Konsequenzen von Investitionen in Unternehmen, deren Aktien haben eine höhere Volatilität. Um zu sehen, ob ein Unternehmen Black-Scholes verwendet, um seine Optionen zu bewerten, und die Annahmen, die es über die Optionen macht, überprüfen Sie seine neuesten 10-Q-Quartalsbericht auf der Website der Securities and Exchange Commission. Warum Optionen sind schwer zu bewerten Wenn ein Unternehmen eine 1 Million Cash-Bonus auf seine Chief Executive Officer gibt, sind die Kosten klar. Aber wenn es gibt dem CEO das Recht, eine Million Aktien der Aktie bei 25 pro Aktie irgendwann in der Zukunft kaufen, sind die Kosten nicht einfach zu zahlen. Beispielsweise könnte die Option wertlos werden, wenn der Bestand während der Gültigkeitsdauer der Option nicht über 25 ansteigt. Black-Scholes kann die theoretischen Kosten der Option zum Zeitpunkt der Ausgabe an den Mitarbeiter bestimmen. Drei Faktoren beeinflussen in der Regel den Preis einer Option unter Black-Scholes, nach dem Options Industry Council, eine Handelsgruppe: Die Optionen intrinsischen Wert. Die Wahrscheinlichkeit einer signifikanten Veränderung der Bestände. Die Kosten für Geld oder Zinsen. Das Black-Scholes-Preismodell berücksichtigt den aktuellen Kurs einer Aktie und den Zielpreis als zwei kritische Variablen bei der Preisgabe einer Option. Eine Call-Option, die Sie vielleicht zurückrufen können, gibt dem Inhaber das Recht, eine Aktie zu einem festgelegten Kursziel innerhalb eines bestimmten Zeitraums zu kaufen, egal wie hoch die Aktie steigt. Betrachten Sie zwei Call-Optionen auf der gleichen 10-Aktie - eine mit einem Zielpreis von 12 und eine mit einem Zielpreis von 15. Ein Investor würde mehr für die Option mit einem 12-Richtpreis bezahlen, weil die Aktien nur 2,01 steigen müssen Die Möglichkeit, wertvoll zu werden, oder in das Geld. Diese Faktoren sind für Mitarbeiteraktienoptionen im Allgemeinen weniger signifikant. Das ist, weil Unternehmen in der Regel Mitarbeiteroptionen mit einem Zielpreis ausgeben, der mit dem Marktpreis am Tag der Ausgabe der Optionen identisch ist. Wahrscheinlichkeit einer signifikanten Änderung: Zeit, bis die Option unter dem Black-Scholes-Modell abläuft, ist eine Option mit einer längeren Lebensdauer wertvoller als eine ansonsten identische Option, die früher abläuft. Das macht logisch Sinn: Mit mehr Zeit zum Traden hat eine Aktie eine größere Chance, ihren Zielpreis zu übertreffen. Um zu veranschaulichen, betrachten Sie zwei identische Call-Optionen auf Aktien der ABT Corp. und gehen davon aus, dass es derzeit handelt für 37 eine Aktie. Die Option, die im November ausläuft, hat zusätzliche vier Monate, um über 43 zu steigen, also ist es wertvoller als eine identische Juli-Option. Mitarbeiteraktienoptionen vergehen oft viele Jahre hinunter, manchmal ein Jahrzehnt später. Aber Mitarbeiter oft Optionen, bevor sie auslaufen. Daher müssen Unternehmen nicht davon ausgehen, dass die Option am letzten Tag ihrer Gültigkeit ausgeübt wird. Bei der Berechnung der Kosten für eine Option, Unternehmen nehmen in der Regel eine kürzere Zeitspanne - sagen, vier Jahre für eine 10-Jahres-Option. Es macht Sinn, warum theyd dies tun wollen: Unter Black-Scholes reduzieren kürzere Begriffe den Wert einer Option und reduzieren so die Kosten der Optionsgewährung für das Unternehmen. Wahrscheinlichkeit signifikanter Veränderung: Volatilität Bei Black-Scholes ist die Volatilität golden. Betrachten Sie zwei Unternehmen, Boring Story Inc. und Wild Child Corp., die beide geschehen, um für 25 eine Aktie Handel. Nun betrachten Sie eine 30-Call-Option auf diese Aktien. Für diese Optionen, um in das Geld zu werden, müssen die Aktien um 5 erhöhen, bevor die Option abläuft. Aus Sicht der Anleger wäre die Option auf Wild Child, die wild auf dem Markt schwankt, natürlich wertvoller als die Option auf Boring Story, die sich historisch kaum verändert hat. Es gibt verschiedene Möglichkeiten, um Volatilität zu messen, aber alle von ihnen zielen darauf ab, eine Bestände Tendenz zu steigen und fallen. Implikationen für Investoren ist, dass Unternehmen, deren Aktienkurse mehr volatil sind, einen höheren Preis zahlen, um Optionen an Mitarbeiter auszugeben. Höhere Zinsen erhöhen den Wert einer Call-Option und erhöhen die Kosten für die Ausgabe von Aktienoptionen an Mitarbeiter. Wenn die Federal Reserve die Zinsen erhöht, tendiert dies dazu, Aktienoptionszuschüsse für Unternehmen teurer zu machen. Preise beeinflussen Optionen Preise wegen der Bedeutung der Zeit Wert des Geldes in Optionen. Betrachten Sie eine Person Kaufoptionen für 100 Aktien von ManyPenny Inc. mit einem Kursziel von 20 Jahren. Der Anleger kann nur einen kleinen Betrag für die Option, sondern kann beiseite legen 2.000 zur Deckung der eventuellen Kosten für die Ausübung der Option und den Kauf der 100 Aktien von Stock. Wenn die Zinsen steigen, können die Optionen Käufer mehr Interesse auf, dass 2.000 Reserve zu verdienen. Als Folge, wenn die Zinsen höher sind, sind Käufer von Call-Optionen in der Regel bereit, mehr für eine Option zu zahlen. Für weitere Informationen Die Financial Accounting Standards Board, ein unabhängiges Gremium, das Standard-Rechnungslegungsverfahren erstellt, bietet eine Online-Erklärung über ihre Regel FAS 123 (R). Die sich auf die Preisbildung von Mitarbeiteraktienoptionen und anderen aktienbasierten Vergütungen bezieht. Die Optionen Industry Council bietet eine Online-Tutorial zu Optionen Preisgestaltung. Die Königlich Schwedische Akademie der Wissenschaften platziert ihr Zitat von 1997, als sie den Nobelpreis für Wirtschaftswissenschaften an Robert C. Merton und Myron S. Scholes verlieh, der in Zusammenarbeit mit dem verstorbenen Fischer Black das Black-Scholes-Optionspreismodell entwickelte. ESOs: Das Black-Scholes-Modell verwenden Unternehmen müssen ein Optionspreismodell verwenden, um den Fair Value ihrer Mitarbeiterbeteiligungsoptionen (ESOs) zu bezahlen. Hier zeigen wir, wie Unternehmen diese Schätzungen nach den bis April 2004 geltenden Regeln darstellen. Eine Option hat einen Mindestwert Eine typische ESO hat einen Zeitwert, aber keinen intrinsischen Wert. Aber die Option ist mehr wert als nichts. Minimalwert ist der Mindestpreis, den jemand bereit wäre, für die Option zu zahlen. Es ist der Wert, der durch zwei vorgeschlagene Gesetzgebungen (die Enzi-Reid und Baker-Eshoo Kongressrechnungen) befürwortet wird. Es ist auch der Wert, den private Unternehmen nutzen können, um ihre Zuschüsse zu bewerten. Wenn Sie Null als Volatilitätseingang in das Black-Scholes-Modell verwenden, erhalten Sie den Minimalwert. Private Unternehmen können den Mindestwert verwenden, da ihnen eine Handelsgeschichte fehlt, was es schwierig macht, die Volatilität zu messen. Gesetzgeber wie der Mindestwert, weil sie die Volatilität - eine Quelle der großen Kontroversen - aus der Gleichung entfernt. Insbesondere die Hightech-Gemeinschaft versucht, die Black-Scholes zu untergraben, indem sie die Unzuverlässigkeit der Volatilität behauptet. Leider entfernt die Beseitigung der Volatilität unfair Vergleiche, weil sie alle Risiken beseitigt. Zum Beispiel hat eine 50-Option auf Wal-Mart-Aktien denselben Mindestwert wie eine 50-Option auf einem High-Tech-Aktien. Der Mindestwert setzt voraus, dass der Bestand mindestens um den risikofreien Zinssatz wachsen muss (z. B. die Rendite von fünf oder zehn Jahren). Wir veranschaulichen die untenstehende Idee, indem wir eine 30 Option mit einem 10-jährigen und einem fünf risikolosen Zinssatz (und keine Dividenden) untersuchen: Sie sehen, dass das Minimalwertmodell drei Dinge macht: (1) Der risikolose Zinssatz für die volle Laufzeit, (2) eine Ausübung und (3) den zukünftigen Gewinn auf den Barwert mit demselben risikolosen Zinssatz diskontiert. Berechnung des Mindestwertes Wenn wir erwarten, dass eine Aktie mindestens eine risikofreie Rendite nach der Mindestwertmethode erzielt, reduzieren Dividenden den Wert der Option (da der Optionsinhaber auf Dividenden verzichtet). Setzen wir einen anderen Weg, wenn wir einen risikofreien Satz für die Gesamtrendite, aber einige der Rückkehr Lecks zu Dividenden übernehmen, wird die erwartete Preiserhöhung niedriger sein. Das Modell spiegelt diese niedrigere Wertschätzung durch eine Verringerung des Aktienkurses wider. In den beiden Exponaten unten bilden wir die Minimalwertformel. Die erste zeigt, wie wir einen Mindestwert für eine nicht dividendenberechtigte Aktie erreichen, die zweite ersetzt einen reduzierten Aktienkurs in die gleiche Gleichung, um die reduzierende Wirkung von Dividenden widerzuspiegeln. Hier ist die Mindestwertformel für eine dividendenberechtigte Aktie: s Aktienkurs e Eulers-Konstante (2.718) d Dividendenrendite t Optionsausdruck k Ausübungspreis r risikoloser Zinssatz Sorgen Sie sich nicht um die Konstante e (2.718) Nur einen Weg, um zusammen und Rabatt kontinuierlich anstelle der Compoundierung in jährlichen Abständen. Black-Scholes Mindestwertvolatilität Wir können die Black-Scholes als gleichwertig ansehen mit den Optionen Mindestwert plus Zusatzwert für die Optionsvolatilität: Je größer die Volatilität ist, desto größer ist der zusätzliche Wert. Graphisch können wir den Minimalwert als eine aufsteigende Funktion des Optionsausdrucks sehen. Volatilität ist ein Plus-up auf der Minimalwertlinie. Diejenigen, die mathematisch geneigt sind, können es vorziehen, die Black-Scholes zu verstehen, indem sie die von uns bereits genannte Minimalwertformel nehmen und zwei Flüchtigkeitsfaktoren (N1 und N2) addieren. Gemeinsam erhöhen diese den Wert je nach Volatilitätsgrad. Black-Scholes muss für ESO angepasst werden Black-Scholes schätzt den Fair Value einer Option. Es handelt sich um ein theoretisches Modell, das mehrere Annahmen einschließlich der vollständigen Handelsfähigkeit der Option (dh des Ausmaßes, in dem die Option an den Optionsinhabern ausgeübt oder verkauft werden kann), und eine konstante Volatilität während des gesamten Optionslebens umfasst. Wenn die Annahmen korrekt sind, ist das Modell ein mathematischer Beweis und seine Preisausgabe muss korrekt sein. Aber streng genommen sind die Annahmen wahrscheinlich nicht korrekt. Zum Beispiel braucht es Aktienkurse, um in einem Weg namens Brown'sche Bewegung zu bewegen - eine faszinierende Zufallswanderung, die tatsächlich in mikroskopischen Partikeln beobachtet wird. Viele Studien bestreiten, dass sich die Bestände nur auf diese Weise bewegen. Andere denken, Brown'sche Bewegung nähert sich eng genug, und betrachten die Black-Scholes eine ungenaue, aber nützliche Schätzung. Für kurzfristige gehandelte Optionen sind die Black-Scholes in vielen empirischen Tests äußerst erfolgreich gewesen, die die Preisentwicklung mit den beobachteten Marktpreisen vergleichen. Es gibt drei wesentliche Unterschiede zwischen ESOs und kurzfristigen gehandelten Optionen (die in der nachstehenden Tabelle zusammengefasst sind). In technischer Hinsicht verstößt jede dieser Unterschiede gegen eine Black-Scholes-Annahme - eine Tatsache, die durch die Rechnungsführungsregeln in FAS 123 in Betracht gezogen wird. Diese beinhalteten zwei Anpassungen oder Korrekturen an den Modellen natürliche Leistung, aber die dritte Differenz - dass die Volatilität nicht über die ungewöhnlich langen konstant bleiben kann Leben einer ESO - wurde nicht angesprochen. Hier sind die drei Unterschiede und die vorgeschlagenen Bewertungskorrekturen vorgeschlagen FAS 123, die noch gültig sind Stand März 2004. Die wichtigste Fix unter den aktuellen Regeln ist, dass Unternehmen können die erwartete Lebensdauer im Modell anstelle der tatsächlichen volle Laufzeit. Es ist typisch für ein Unternehmen, eine erwartete Lebensdauer von vier bis sechs Jahren verwenden, um Optionen mit 10-Jahres-Bedingungen zu bewerten. Das ist eine unangenehme Verlegenheit - eine Band-Hilfe, wirklich - seit Black-Scholes den eigentlichen Begriff verlangt. Aber FASB war auf der Suche nach einem quasi-objektiven Weg, den ESO-Wert zu reduzieren, da er nicht gehandelt wird (das heißt, den ESO-Wert für seinen Mangel an Liquidität zu reduzieren). Fazit - Praktische Effekte Der Black-Scholes ist empfindlich auf mehrere Variablen, aber wenn wir eine 10-jährige Option auf eine Dividendenausschüttung und eine risikofreie Rate von 5 annehmen, ergibt sich der Minimalwert (vorausgesetzt keine Volatilität) Des Aktienkurses. Wenn wir die erwartete Volatilität von z. B. 50 hinzufügen, verdoppelt sich der Optionswert in etwa auf fast 60 des Aktienkurses. Also, für diese besondere Option, Black-Scholes gibt uns 60 der Aktienkurs. Aber wenn es auf eine ESO angewendet wird, kann ein Unternehmen die tatsächlichen 10-Jahres-Term-Input auf eine kürzere erwartete Lebensdauer zu reduzieren. Für das obige Beispiel reduziert die Verringerung der 10-Jahres-Laufzeit auf eine Fünf-Jahres-erwartete Leben bringt den Wert auf etwa 45 der Nennwert (und eine Reduktion von mindestens 10-20 ist typisch, wenn die Reduzierung der Begriff auf die erwartete Lebensdauer). Schließlich bekommt das Unternehmen eine Friseuse Reduktion in Erwartung der Verfall aufgrund der Mitarbeiter Umsatz zu nehmen. In dieser Hinsicht wäre ein weiterer Haarschnitt von 5-15 üblich. So würden in unserem Beispiel die 45 weiter auf eine Aufwandsentschädigung von etwa 30-40 des Aktienkurses reduziert werden. Nach der Addition der Volatilität und der Subtraktion für einen reduzierten Laufzeitverlust und erwarteten Verfall, sind wir fast wieder auf den Mindestwert ESOs: Verwendung der Binomial ModelOptions Pricing: Black-Scholes-Modell Das Black-Scholes-Modell zur Berechnung der Prämie einer Option war Im Jahr 1973 in einem Papier mit dem Titel "Die Preisgestaltung der Optionen und Corporate Liabilities" veröffentlicht im Journal of Political Economy. Die Formel, die von den drei Ökonomen Fischer Black, Myron Scholes und Robert Merton entwickelt wurde, ist vielleicht das wohl bekannteste Optionspreismodell der Welt. Black verstarb zwei Jahre, bevor Scholes und Merton 1997 den Nobelpreis für Wirtschaftswissenschaften erhielten, um eine neue Methode zur Bestimmung des Wertes von Derivaten zu finden (der Nobelpreis wird nicht posthum gegeben, doch der Nobel-Ausschuss würdigte die Rolle Blacks im Schwarzen - Scholes-Modell). Das Black-Scholes-Modell wird verwendet, um den theoretischen Preis für europäische Put - und Call-Optionen zu berechnen, wobei Dividenden, die während der Optionenlebensdauer gezahlt wurden, ignoriert werden. Während das ursprüngliche Black-Scholes-Modell die Auswirkungen von Dividenden, die während der Laufzeit der Option gezahlt wurden, nicht berücksichtigte, kann das Modell angepasst werden, um Dividenden durch die Festlegung des Dividendendatums des Basiswertes zu berücksichtigen. Das Modell stellt bestimmte Annahmen unter anderem dar: Die Optionen sind europäisch und können nur bei Verfall ausgeübt werden. Während der Laufzeit der Option werden keine Dividenden ausgeschüttet Effiziente Märkte (dh Marktbewegungen können nicht vorhergesagt werden) Keine Provisionen Der risikofreie Zins und die Volatilität von Die zugrunde liegenden sind bekannt und konstant Folgt eine logarithmische Verteilung, die ist, werden die Renditen auf dem Basiswert normal verteilt. Die in Abbildung 4 dargestellte Formel berücksichtigt folgende Variablen: Aktueller Basiswert Optionen Ausübungspreis Zeit bis zum Auslaufen, ausgedrückt als Prozentsatz eines Jahres Implizite Volatilität Risikofreie Zinsen Abbildung 4: Die Black-Scholes-Preisformel für Call Werden. Das Modell ist im Wesentlichen in zwei Teile aufgeteilt: das erste Teil, SN (d1). Multipliziert den Preis mit der Änderung der Gesprächsprämie in Relation zu einer Änderung des Basiswerts. Dieser Teil der Formel zeigt den erwarteten Nutzen des Kaufs des Underlyings. Der zweite Teil, N (d2) Ke (-rt). (Gilt das Black-Scholes-Modell für europäische Optionen, die nur am Verfalltag ausübbar sind). Der Wert der Option wird berechnet, indem die Differenz zwischen den beiden Teilen genommen wird, wie in der Gleichung gezeigt. Die Mathematik in der Formel beteiligt ist kompliziert und kann einschüchternd sein. Glücklicherweise müssen jedoch Händler und Investoren die Mathematik nicht kennen oder verstehen, um die Black-Scholes-Modellierung in ihren eigenen Strategien anzuwenden. Wie bereits erwähnt, haben Optionen Händler Zugang zu einer Vielzahl von Online-Optionen Taschenrechner und viele der heutigen Handelsplattformen verfügen über robuste Optionen Analyse-Tools, einschließlich Indikatoren und Tabellenkalkulationen, die die Berechnungen und die Ausgabe der Optionen Preisgestaltung. Ein Beispiel für einen Online-Black-Scholes-Rechner ist in Abbildung 5 dargestellt. Der Benutzer muss alle fünf Variablen eingeben (Ausübungspreis, Aktienkurs, Zeit (Tage), Volatilität und risikoloser Zinssatz). Abbildung 5: Ein Online-Black-Scholes-Rechner kann verwendet werden, um Werte für Anrufe und Puts zu erhalten. Die Benutzer müssen die erforderlichen Felder eingeben und der Rechner übernimmt den Rest. Rechner Höflichkeit tradinghoday

No comments:

Post a Comment